Active Record Validations

January 13, 2015

This guide teaches you how to validate the state of objects before they go into the database using Active
Record’s validations feature.
After reading this guide, you will know:

e How to use the built-in Active Record validation helpers.
e How to create your own custom validation methods.
e How to work with the error messages generated by the validation process.

1 Validations Overview
Here’s an example of a very simple validation:

class Person < ActiveRecord::Base
validates :name, presence: true
end

Person.create(name: "John Doe").valid? # => true
Person.create(name: nil).valid? # => false

As you can see, our validation lets us know that our Person is not valid without a name attribute. The
second Person will not be persisted to the database.
Before we dig into more details, let’s talk about how validations fit into the big picture of your application.

1.1 Why Use Validations?

Validations are used to ensure that only valid data is saved into your database. For example, it may be
important to your application to ensure that every user provides a valid email address and mailing address.
Model-level validations are the best way to ensure that only valid data is saved into your database. They are
database agnostic, cannot be bypassed by end users, and are convenient to test and maintain. Rails makes
them easy to use, provides built-in helpers for common needs, and allows you to create your own validation
methods as well.

There are several other ways to validate data before it is saved into your database, including native database
constraints, client-side validations, controller-level validations. Here’s a summary of the pros and cons:

1 VALIDATIONS OVERVIEW 2

e Database constraints and/or stored procedures make the validation mechanisms database-dependent
and can make testing and maintenance more difficult. However, if your database is used by other
applications, it may be a good idea to use some constraints at the database level. Additionally, database-
level validations can safely handle some things (such as uniqueness in heavily-used tables) that can be
difficult to implement otherwise.

e Client-side validations can be useful, but are generally unreliable if used alone. If they are implemented
using JavaScript, they may be bypassed if JavaScript is turned off in the user’s browser. However, if
combined with other techniques, client-side validation can be a convenient way to provide users with
immediate feedback as they use your site.

e Controller-level validations can be tempting to use, but often become unwieldy and difficult to test and
maintain. Whenever possible, it’s a good idea to keep your controllers skinny, as it will make your
application a pleasure to work with in the long run.

Choose these in certain, specific cases. It’s the opinion of the Rails team that model-level validations are
the most appropriate in most circumstances.

1.2 When Does Validation Happen?

There are two kinds of Active Record objects: those that correspond to a row inside your database and those
that do not. When you create a fresh object, for example using the new method, that object does not belong
to the database yet. Once you call save upon that object it will be saved into the appropriate database
table. Active Record uses the new_record? instance method to determine whether an object is already in the
database or not. Consider the following simple Active Record class:

class Person < ActiveRecord: :Base
end

We can see how it works by looking at some rails console output:

$ bin/rails console

>> p = Person.new(name: "John Doe")

=> #<Person id: nil, name: "John Doe", created_at: nil, updated_at: nil>
>> p.new_record?

=> true

>> p.save

=> true

>> p.new_record?

=> false

Creating and saving a new record will send an SQL INSERT operation to the database. Updating an existing
record will send an SQL UPDATE operation instead. Validations are typically run before these commands are
sent to the database. If any validations fail, the object will be marked as invalid and Active Record will not
perform the INSERT or UPDATE operation. This avoids storing an invalid object in the database. You can
choose to have specific validations run when an object is created, saved, or updated.

There are many ways to change the state of an object in the database. Some methods will trigger valida-
tions, but some will not. This means that it’s possible to save an object in the database in an invalid state if
you aren’t careful.

1 VALIDATIONS OVERVIEW 3

The following methods trigger validations, and will save the object to the database only if the object is
valid:

create
create!
save
save!
update
update!

The bang versions (e.g. save!) raise an exception if the record is invalid. The non-bang versions don’t,
save and update return false, create just returns the object.

1.3 Skipping Validations

The following methods skip validations, and will save the object to the database regardless of its validity.
They should be used with caution.

decrement!
decrement_counter
increment!
increment_counter
toggle!

touch

update_all
update_attribute
update_column
update_columns
update_counters

Note that save also has the ability to skip validations if passed validate: false as argument. This
technique should be used with caution.

e save(validate: false)

1.4 valid? and invalid?

To verify whether or not an object is valid, Rails uses the valid? method. You can also use this method on
your own. valid? triggers your validations and returns true if no errors were found in the object, and false
otherwise. As you saw above:

class Person < ActiveRecord: :Base
validates :name, presence: true
end

Person.create(name: "John Doe").valid? # => true
Person.create(name: nil).valid? # => false

1 VALIDATIONS OVERVIEW 4

After Active Record has performed validations, any errors found can be accessed through the errors
.messages instance method, which returns a collection of errors. By definition, an object is valid if this
collection is empty after running validations.

Note that an object instantiated with new will not report errors even if it’s technically invalid, because
validations are not run when using new.

class Person < ActiveRecord: :Base
validates :name, presence: true
end

>> p = Person.new
=> #<Person id: nil, name: nil>
>> p.errors.messages

#=> {3

>> p.valid?

=> false

>> p.errors.messages

=> {name:["can’t be blank"]}

>> p = Person.create

=> #<Person id: nil, name: nil>
>> p.errors.messages

=> {name:["can’t be blank"]}

>> p.save
=> false

>> p.save!
=> ActiveRecord: :RecordInvalid: Validation failed: Name can’t be blank

>> Person.create!
=> ActiveRecord: :RecordInvalid: Validation failed: Name can’t be blank

invalid? is simply the inverse of valid?. It triggers your validations, returning true if any errors were
found in the object, and false otherwise.

1.5 errorsl]

To verify whether or not a particular attribute of an object is valid, you can use errors[:attribute]. It
returns an array of all the errors for :attribute. If there are no errors on the specified attribute, an empty
array is returned.

This method is only useful after validations have been run, because it only inspects the errors collection and
does not trigger validations itself. It’s different from the ActiveRecord: :Base#invalid? method explained
above because it doesn’t verify the validity of the object as a whole. It only checks to see whether there are
errors found on an individual attribute of the object.

2 VALIDATION HELPERS 5

class Person < ActiveRecord: :Base
validates :name, presence: true
end

>> Person.new.errors[:name] .any? # => false
>> Person.create.errors[:name] .any? # => true

We’ll cover validation errors in greater depth in the [Working with Validation Errord section. For now, let’s
turn to the built-in validation helpers that Rails provides by default.

2 Validation Helpers

Active Record offers many pre-defined validation helpers that you can use directly inside your class definitions.
These helpers provide common validation rules. Every time a validation fails, an error message is added to
the object’s errors collection, and this message is associated with the attribute being validated.

Each helper accepts an arbitrary number of attribute names, so with a single line of code you can add the
same kind of validation to several attributes.

All of them accept the :on and :message options, which define when the validation should be run and
what message should be added to the errors collection if it fails, respectively. The :on option takes one of
the values :create or :update. There is a default error message for each one of the validation helpers. These
messages are used when the :message option isn’t specified. Let’s take a look at each one of the available
helpers.

2.1 acceptance

This method validates that a checkbox on the user interface was checked when a form was submitted. This is
typically used when the user needs to agree to your application’s terms of service, confirm reading some text,
or any similar concept. This validation is very specific to web applications and this ‘acceptance’ does not need
to be recorded anywhere in your database (if you don’t have a field for it, the helper will just create a virtual
attribute).

class Person < ActiveRecord: :Base
validates :terms_of_service, acceptance: true
end

The default error message for this helper is “must be accepted”.
It can receive an :accept option, which determines the value that will be considered acceptance. It defaults
to “1” and can be easily changed.

class Person < ActiveRecord: :Base
validates :terms_of_service, acceptance: { accept: ’yes’ }
end

2.2 validates_associated

You should use this helper when your model has associations with other models and they also need to be
validated. When you try to save your object, valid? will be called upon each one of the associated objects.

2 VALIDATION HELPERS 6

class Library < ActiveRecord::Base
has_many :books
validates_associated :books

end

This validation will work with all of the association types.

Don’t use validates_associated on both ends of your associations. They would call each other in an
infinite loop.

The default error message for validates_associated is “s invalid”. Note that each associated object will
contain its own errors collection; errors do not bubble up to the calling model.

2.3 confirmation

You should use this helper when you have two text fields that should receive exactly the same content. For
example, you may want to confirm an email address or a password. This validation creates a virtual attribute
whose name is the name of the field that has to be confirmed with “_confirmation” appended.

class Person < ActiveRecord: :Base
validates :email, confirmation: true
end

In your view template you could use something like

<)%= text_field :person, :email %>
<%= text_field :person, :email_confirmation %>

This check is performed only if email_confirmation is not nil. To require confirmation, make sure to
add a presence check for the confirmation attribute (we’ll take a look at presence later on this guide):

class Person < ActiveRecord: :Base
validates :email, confirmation: true
validates :email_confirmation, presence: true
end

The default error message for this helper is “doesn’t match confirmation”.

2.4 exclusion

This helper validates that the attributes’ values are not included in a given set. In fact, this set can be any
enumerable object.

class Account < ActiveRecord: :Base
validates :subdomain, exclusion: { in: %w(www us ca jp),
message: "V{valuel} is reserved." }
end

The exclusion helper has an option :in that receives the set of values that will not be accepted for the
validated attributes. The :in option has an alias called :within that you can use for the same purpose, if
you’d like to. This example uses the :message option to show how you can include the attribute’s value.

The default error message is “is reserved”.

2 VALIDATION HELPERS 7

2.5 format

This helper validates the attributes’ values by testing whether they match a given regular expression, which
is specified using the :with option.

class Product < ActiveRecord: :Base
validates :legacy_code, format: { with: /\A[a-zA-Z]+\z/,
message: "only allows letters" }
end

Alternatively, you can require that the specified attribute does not match the regular expression by using
the :without option.
The default error message is “is invalid”.

2.6 inclusion

This helper validates that the attributes’ values are included in a given set. In fact, this set can be any
enumerable object.

class Coffee < ActiveRecord: :Base
validates :size, inclusion: { in: %w(small medium large),
message: "/{value} is not a valid size" }
end

The inclusion helper has an option :in that receives the set of values that will be accepted. The :in
option has an alias called :within that you can use for the same purpose, if you’d like to. The previous
example uses the :message option to show how you can include the attribute’s value.

The default error message for this helper is “is not included in the list”.

2.7 length

This helper validates the length of the attributes’ values. It provides a variety of options, so you can specify
length constraints in different ways:

class Person < ActiveRecord::Base
validates :name, length: { minimum: 2 }
validates :bio, length: { maximum: 500 }
validates :password, length: { in: 6..20 }
validates :registration_number, length: { is: 6 }
end

The possible length constraint options are:

e :minimum - The attribute cannot have less than the specified length.

e :maximum - The attribute cannot have more than the specified length.

e :in (or :within) - The attribute length must be included in a given interval. The value for this option
must be a range.

e :is - The attribute length must be equal to the given value.

2 VALIDATION HELPERS 8

The default error messages depend on the type of length validation being performed. You can personalize
these messages using the :wrong length, :too_long, and :too_short options and %{count} as a placeholder
for the number corresponding to the length constraint being used. You can still use the :message option to
specify an error message.

class Person < ActiveRecord: :Base
validates :bio, length: { maximum: 1000,
too_long: "%{count} characters is the maximum allowed" }
end

This helper counts characters by default, but you can split the value in a different way using the :tokenizer
option:

class Essay < ActiveRecord: :Base

validates :content, length: {
minimum: 300,
maximum: 400,
tokenizer: lambda { |str| str.split(/\s+/) },
too_short: "must have at least %{count} words",
too_long: "must have at most %{count} words"

}

end

Note that the default error messages are plural (e.g., “is too short (minimum is %{count} characters)”).
For this reason, when :minimum is 1 you should provide a personalized message or use presence: true
instead. When :in or :within have a lower limit of 1, you should either provide a personalized message or
call presence prior to length.

2.8 numericality

This helper validates that your attributes have only numeric values. By default, it will match an optional sign
followed by an integral or floating point number. To specify that only integral numbers are allowed set :only
_integer to true.

If you set :only_integer to true, then it will use the

/\A[+-17\d+\Z/

regular expression to validate the attribute’s value. Otherwise, it will try to convert the value to a number
using Float.
Note that the regular expression above allows a trailing newline character.

class Player < ActiveRecord: :Base

validates :points, numericality: true

validates :games_played, numericality: { only_integer: true }
end

Besides :only_integer, this helper also accepts the following options to add constraints to acceptable
values:

2 VALIDATION HELPERS 9

e :greater_than - Specifies the value must be greater than the supplied value. The default error message
for this option is “must be greater than %{count}”.

e :greater_than or_equal_to - Specifies the value must be greater than or equal to the supplied value.
The default error message for this option is “must be greater than or equal to %{count}”.

e :equal_to - Specifies the value must be equal to the supplied value. The default error message for this
option is “must be equal to %{count}”.

e :less_than - Specifies the value must be less than the supplied value. The default error message for
this option is “must be less than %{count}”.

e :less_than or_equal_to - Specifies the value must be less than or equal the supplied value. The default
error message for this option is “must be less than or equal to %{count}”.

e :0dd - Specifies the value must be an odd number if set to true. The default error message for this
option is “must be odd”.

e :even - Specifies the value must be an even number if set to true. The default error message for this
option is “must be even”.

The default error message is “is not a number”.

2.9 presence

This helper validates that the specified attributes are not empty. It uses the blank? method to check if the
value is either nil or a blank string, that is, a string that is either empty or consists of whitespace.

class Person < ActiveRecord: :Base
validates :name, :login, :email, presence: true
end

If you want to be sure that an association is present, you'll need to test whether the associated object itself
is present, and not the foreign key used to map the association.

class Lineltem < ActiveRecord::Base
belongs_to :order
validates :order, presence: true
end

In order to validate associated records whose presence is required, you must specify the : inverse_of option
for the association:

class Order < ActiveRecord::Base
has_many :line_items, inverse_of: :order
end

If you validate the presence of an object associated via a has_one or has_many relationship, it will check
that the object is neither blank? nor marked for_destruction?.

Since false.blank? is true, if you want to validate the presence of a boolean field you should use one of
the following validations:

2 VALIDATION HELPERS 10

validates :boolean_field_name, presence: true
validates :boolean_field_name, inclusion: { in: [true, false] }
validates :boolean_field_name, exclusion: { in: [nil] }

By using one of these validations, you will ensure the value will NOT be nil which would result in a NULL
value in most cases.

2.10 absence

This helper validates that the specified attributes are absent. It uses the present? method to check if the
value is not either nil or a blank string, that is, a string that is either empty or consists of whitespace.

class Person < ActiveRecord: :Base
validates :name, :login, :email, absence: true
end

If you want to be sure that an association is absent, you’ll need to test whether the associated object itself
is absent, and not the foreign key used to map the association.

class LinelItem < ActiveRecord: :Base
belongs_to :order
validates :order, absence: true
end

In order to validate associated records whose absence is required, you must specify the :inverse_of option
for the association:

class Order < ActiveRecord: :Base
has_many :line_items, inverse_of: :order
end

If you validate the absence of an object associated via a has_one or has_many relationship, it will check
that the object is neither present? nor marked_for_destruction?.

Since false.present? is false, if you want to validate the absence of a boolean field you should use
validates :field name, exclusion: { in: [true, false] }

The default error message is “must be blank”.

2.11 uniqueness

This helper validates that the attribute’s value is unique right before the object gets saved. It does not create
a uniqueness constraint in the database, so it may happen that two different database connections create two
records with the same value for a column that you intend to be unique. To avoid that, you must create a
unique index on both columns in your database. See fhe MySQL manua] for more details about multiple
column indexes.

class Account < ActiveRecord::Base
validates :email, uniqueness: true
end

http://dev.mysql.com/doc/refman/5.6/en/multiple-column-indexes.html

2 VALIDATION HELPERS 11

The validation happens by performing an SQL query into the model’s table, searching for an existing
record with the same value in that attribute.

There is a :scope option that you can use to specify other attributes that are used to limit the uniqueness
check:

class Holiday < ActiveRecord::Base
validates :name, uniqueness: { scope: :year,
message: "should happen once per year" }
end

There is also a :case_sensitive option that you can use to define whether the uniqueness constraint will
be case sensitive or not. This option defaults to true.

class Person < ActiveRecord: :Base
validates :name, uniqueness: { case_sensitive: false }
end

Note that some databases are configured to perform case-insensitive searches anyway:.
The default error message is “has already been taken”.

2.12 validates_with

This helper passes the record to a separate class for validation.

class GoodnessValidator < ActiveModel::Validator
def validate(record)

if record.first_name == "Evil"
record.errors[:base] << "This person is evil"
end
end

end

class Person < ActiveRecord: :Base
validates_with GoodnessValidator
end

Errors added to record.errors[:base] relate to the state of the record as a whole, and not to a specific
attribute.

The validates_with helper takes a class, or a list of classes to use for validation. There is no default error
message for validates_with. You must manually add errors to the record’s errors collection in the validator
class.

To implement the validate method, you must have a record parameter defined, which is the record to be
validated.

Like all other validations, validates_with takes the :if, :unless and :on options. If you pass any other
options, it will send those options to the validator class as options:

2 VALIDATION HELPERS 12

class GoodnessValidator < ActiveModel::Validator
def validate(record)

if options[:fields].any?{|field| record.send(field) == "Evil" }
record.errors[:base] << "This person is evil"
end
end

end

class Person < ActiveRecord: :Base
validates_with GoodnessValidator, fields: [:first_name, :last_name]
end

Note that the validator will be initialized only once for the whole application life cycle, and not on each
validation run, so be careful about using instance variables inside it.

If your validator is complex enough that you want instance variables, you can easily use a plain old Ruby
object instead:

class Person < ActiveRecord: :Base
validate do |person]|
GoodnessValidator.new(person) .validate
end
end

class GoodnessValidator
def initialize(person)
@person = person
end

def validate
if some_complex_condition_involving_ivars_and_private_methods?
@person.errors[:base] << "This person is evil"
end
end

...
end

2.13 validates_each

This helper validates attributes against a block. It doesn’t have a predefined validation function. You should
create one using a block, and every attribute passed to validates_each will be tested against it. In the
following example, we don’t want names and surnames to begin with lower case.

class Person < ActiveRecord: :Base
validates_each :name, :surname do |record, attr, valuel
record.errors.add(attr, ’must start with upper case’) if value =~ /\A[[:lower:]]/
end

3 COMMON VALIDATION OPTIONS 13

end

The block receives the record, the attribute’s name and the attribute’s value. You can do anything you
like to check for valid data within the block. If your validation fails, you should add an error message to the
model, therefore making it invalid.

3 Common Validation Options

These are common validation options:

3.1 :allow.nil

The :allow nil option skips the validation when the value being validated is nil.

class Coffee < ActiveRecord: :Base
validates :size, inclusion: { in: %w(small medium large),
message: "/{value} is not a valid size" }, allow_nil: true
end

3.2 :allow_blank

The :allow_blank option is similar to the :allow.nil option. This option will let validation pass if the
attribute’s value is blank?, like nil or an empty string for example.

class Topic < ActiveRecord: :Base
validates :title, length: { is: 5 }, allow_blank: true
end

Topic.create(title: "").valid? # => true
Topic.create(title: nil).valid? # => true

3.3 :message

As you’ve already seen, the :message option lets you specify the message that will be added to the errors
collection when validation fails. When this option is not used, Active Record will use the respective default
error message for each validation helper.

3.4 :on

The :on option lets you specify when the validation should happen. The default behavior for all the built-in
validation helpers is to be run on save (both when you're creating a new record and when you’re updating it).
If you want to change it, you can use on: :create to run the validation only when a new record is created
or on: :update to run the validation only when a record is updated.

class Person < ActiveRecord::Base
it will be possible to update email with a duplicated value

4 STRICT VALIDATIONS 14

validates :email, uniqueness: true, on: :create

it will be possible to create the record with a non-numerical age
validates :age, numericality: true, on: :update

the default (validates on both create and update)
validates :name, presence: true
end

4 Strict Validations

You can also specify validations to be strict and raise ActiveModel: :StrictValidationFailed when the
object is invalid.

class Person < ActiveRecord: :Base
validates :name, presence: { strict: true }
end

Person.new.valid? # => ActiveModel::StrictValidationFailed: Name can’t be blank
There is also an ability to pass custom exception to :strict option.

class Person < ActiveRecord: :Base
validates :token, presence: true, uniqueness: true, strict: TokenGenerationException
end

Person.new.valid? # => TokenGenerationException: Token can’t be blank

5 Conditional Validation

Sometimes it will make sense to validate an object only when a given predicate is satisfied. You can do that
by using the :if and :unless options, which can take a symbol, a string, a Proc or an Array. You may use
the :if option when you want to specify when the validation should happen. If you want to specify when
the validation should not happen, then you may use the :unless option.

5.1 Using a Symbol with :if and :unless

You can associate the :if and :unless options with a symbol corresponding to the name of a method that
will get called right before validation happens. This is the most commonly used option.

class Order < ActiveRecord::Base
validates :card_number, presence: true, if: :paid_with_card?

def paid_with_card?
payment_type == "card"
end
end

5 CONDITIONAL VALIDATION 15

5.2 Using a String with :if and :unless

You can also use a string that will be evaluated using eval and needs to contain valid Ruby code. You should
use this option only when the string represents a really short condition.

class Person < ActiveRecord: :Base
validates :surname, presence: true, if: "name.nil?"
end

5.3 Using a Proc with :if and :unless

Finally, it’s possible to associate :if and :unless with a Proc object which will be called. Using a Proc
object gives you the ability to write an inline condition instead of a separate method. This option is best
suited for one-liners.

class Account < ActiveRecord: :Base
validates :password, confirmation: true,
unless: Proc.new { |al a.password.blank? }
end

5.4 Grouping Conditional validations

Sometimes it is useful to have multiple validations use one condition, it can be easily achieved using with
_options.

class User < ActiveRecord: :Base
with_options if: :is_admin? do |admin]|
admin.validates :password, length: { minimum: 10 }
admin.validates :email, presence: true
end
end

All validations inside of with_options block will have automatically passed the condition if: :is_admin?

5.5 Combining Validation Conditions

On the other hand, when multiple conditions define whether or not a validation should happen, an Array can
be used. Moreover, you can apply both :if and :unless to the same validation.

class Computer < ActiveRecord::Base
validates :mouse, presence: true,
if: ["market.retail?", :desktop?],
unless: Proc.new { |c| c.trackpad.present? }
end

The validation only runs when all the :if conditions and none of the :unless conditions are evaluated to
true.

6 PERFORMING CUSTOM VALIDATIONS 16

6 Performing Custom Validations

When the built-in validation helpers are not enough for your needs, you can write your own validators or
validation methods as you prefer.

6.1 Custom Validators

Custom validators are classes that extend ActiveModel: :Validator. These classes must implement a validate
method which takes a record as an argument and performs the validation on it. The custom validator is called
using the validates_with method.

class MyValidator < ActiveModel::Validator
def validate(record)
unless record.name.starts_with? ’X’
record.errors[:name] << ’Need a name starting with X please!’
end
end
end

class Person
include ActiveModel::Validations
validates_with MyValidator

end

The easiest way to add custom validators for validating individual attributes is with the convenient
ActiveModel: :EachValidator. In this case, the custom validator class must implement a validate_each
method which takes three arguments: record, attribute, and value. These correspond to the instance, the
attribute to be validated, and the value of the attribute in the passed instance.

class EmailValidator < ActiveModel: :EachValidator
def validate_each(record, attribute, value)
unless value =~ /\A(C["@\s]+)@((?7:[-a-z0-9]1+\.)+[a-2z]{2,})\z/1i
record.errors[attribute] << (options[:message] || "is not an email")
end
end
end

class Person < ActiveRecord: :Base
validates :email, presence: true, email: true
end

As shown in the example, you can also combine standard validations with your own custom validators.

6.2 Custom Methods

You can also create methods that verify the state of your models and add messages to the errors collection
when they are invalid. You must then register these methods by using the validate class method, passing in
the symbols for the validation methods’ names.

7 WORKING WITH VALIDATION ERRORS 17

You can pass more than one symbol for each class method and the respective validations will be run in the
same order as they were registered.

class Invoice < ActiveRecord::Base
validate :expiration_date_cannot_be_in_the_past,
:discount_cannot_be_greater_than_total_value

def expiration_date_cannot_be_in_the_past
if expiration_date.present? && expiration_date < Date.today
errors.add(:expiration_date, "can’t be in the past")
end
end

def discount_cannot_be_greater_than_total_value
if discount > total_value
errors.add(:discount, "can’t be greater than total value")
end
end
end

By default such validations will run every time you call valid?. It is also possible to control when to run
these custom validations by giving an :on option to the validate method, with either: :create or :update.

class Invoice < ActiveRecord: :Base
validate :active_customer, on: :create

def active_customer
errors.add(:customer_id, "is not active") unless customer.active?
end
end

7 Working with Validation Errors

In addition to the valid? and invalid? methods covered earlier, Rails provides a number of methods for
working with the errors collection and inquiring about the validity of objects.

The following is a list of the most commonly used methods. Please refer to the ActiveModel: :Errors
documentation for a list of all the available methods.

7.1 errors

Returns an instance of the class ActiveModel: :Errors containing all errors. Each key is the attribute name
and the value is an array of strings with all errors.

class Person < ActiveRecord: :Base
validates :name, presence: true, length: { minimum: 3 }
end

7 WORKING WITH VALIDATION ERRORS 18

person = Person.new
person.valid? # => false
person.errors.messages
=> {:name=>["can’t be blank", "is too short (minimum is 3 characters)"]}

person = Person.new(name: "John Doe")
person.valid? # => true
person.errors.messages # => {}

7.2 errorsl]

errors[] is used when you want to check the error messages for a specific attribute. It returns an array of
strings with all error messages for the given attribute, each string with one error message. If there are no
errors related to the attribute, it returns an empty array.

class Person < ActiveRecord: :Base
validates :name, presence: true, length: { minimum: 3 }
end

person = Person.new(name: "John Doe")
person.valid? # => true
person.errors[:name] # => []

person = Person.new(name: "JD")
person.valid? # => false
person.errors[:name] # => ["is too short (minimum is 3 characters)"]

person = Person.new
person.valid? # => false
person.errors [:name]
=> ["can’t be blank", "is too short (minimum is 3 characters)"]

7.3 errors.add

The add method lets you manually add messages that are related to particular attributes. You can use the
errors.full messages or errors.to_a methods to view the messages in the form they might be displayed
to a user. Those particular messages get the attribute name prepended (and capitalized). add receives the
name of the attribute you want to add the message to, and the message itself.

class Person < ActiveRecord: :Base
def a_method_used_for_validation_purposes
errors.add(:name, "cannot contain the characters !@#%x()_-+=")
end
end

7 WORKING WITH VALIDATION ERRORS 19

person = Person.create(name: "!Q#")

person.errors [:name]
=> ["cannot contain the characters !'Q@#)*()_-+="]

person.errors.full_messages
=> ["Name cannot contain the characters !@#}*()_-+="]

Another way to do this is using []= setter

class Person < ActiveRecord::Base
def a_method_used_for_validation_purposes

errors[:name] = "cannot contain the characters !@#%*x()_-+="
end
end
person = Person.create(name: "!@#")

person.errors [:name]
=> ["cannot contain the characters !'Q@#%*()_-+="]

person.errors.to_a
=> ["Name cannot contain the characters !0#%*()_-+="]

7.4 errors[:base]

You can add error messages that are related to the object’s state as a whole, instead of being related to a
specific attribute. You can use this method when you want to say that the object is invalid, no matter the
values of its attributes. Since errors[:base] is an array, you can simply add a string to it and it will be used
as an error message.

class Person < ActiveRecord::Base
def a_method_used_for_validation_purposes
errors[:base] << "This person is invalid because ...
end

n
end

7.5 errors.clear

The clear method is used when you intentionally want to clear all the messages in the errors collection. Of
course, calling errors.clear upon an invalid object won’t actually make it valid: the errors collection will
now be empty, but the next time you call valid? or any method that tries to save this object to the database,
the validations will run again. If any of the validations fail, the errors collection will be filled again.

class Person < ActiveRecord: :Base
validates :name, presence: true, length: { minimum: 3 }
end

8 DISPLAYING VALIDATION ERRORS IN VIEWS 20

person = Person.new
person.valid? # => false
person.errors [:name]
=> ["can’t be blank", "is too short (minimum is 3 characters)"]

person.errors.clear
person.errors.empty? # => true

p.save # => false

p.errors[:name]
=> ["can’t be blank", "is too short (minimum is 3 characters)"]

7.6 errors.size

The size method returns the total number of error messages for the object.

class Person < ActiveRecord: :Base
validates :name, presence: true, length: { minimum: 3 }
end

person = Person.new
person.valid? # => false
person.errors.size # => 2

person = Person.new(name: "Andrea", email: "andrea®@example.com")
person.valid? # => true
person.errors.size # => 0

8 Displaying Validation Errors in Views

Once you’ve created a model and added validations, if that model is created via a web form, you probably
want to display an error message when one of the validations fail.

Because every application handles this kind of thing differently, Rails does not include any view helpers
to help you generate these messages directly. However, due to the rich number of methods Rails gives you to
interact with validations in general, it’s fairly easy to build your own. In addition, when generating a scaffold,
Rails will put some ERB into the _form.html.erb that it generates that displays the full list of errors on that
model.

Assuming we have a model that’s been saved in an instance variable named @article, it looks like this:

<), if @article.errors.any? %>

<div id="error_explanation">
<h2><Y= pluralize(@article.errors.count, "error") %> prohibited this

article from being saved:</h2>

9 FEEDBACK 21

<Y, @article.errors.full_messages.each do |msgl| %>
<1i><Y%= msg %></1li>
<% end %>

</div>
<% end %>

Furthermore, if you use the Rails form helpers to generate your forms, when a validation error occurs on
a field, it will generate an extra <div> around the entry.

<div class="field_with_errors">
<input id="article_title" name="article[title]" size="30" type="text" value="">
</div>

You can then style this div however you’d like. The default scaffold that Rails generates, for example, adds
this CSS rule:

.field_with_errors {
padding: 2px;
background-color: red;
display: table;

}

This means that any field with an error ends up with a 2 pixel red border.

9 Feedback

You're encouraged to help improve the quality of this guide.

Please contribute if you see any typos or factual errors. To get started, you can read our Hocumentafion
Eontribufiond section.

You may also find incomplete content, or stuff that is not up to date. Please do add any missing docu-
mentation for master. Make sure to check first to verify if the issues are already fixed or not on
the master branch. Check the Ruby on Rails Guides Guidelineq for style and conventions.

If for whatever reason you spot something to fix but cannot patch it yourself, please ppen an issud.

And last but not least, any kind of discussion regarding Ruby on Rails documentation is very welcome in

the fubyonrails-docs mailing [is.

http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to-the-rails-documentation
http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to-the-rails-documentation
http://edgeguides.rubyonrails.org
ruby_on_rails_guides_guidelines.html
https://github.com/rails/rails/issues
http://groups.google.com/group/rubyonrails-docs

